Monitoring of Virtual Routers of OpenStack with
Monasca

(Session 2012-2016)

Submitted By
Hifza Khalid 2012-CE-81
Qurat-ul-Ain Zafar 2012-CE-64
Rubab Zahra Sarfraz 2012-CE-67

Project Supervisor
Dr. Irfan Ullah Chaudhary

Department of Computer Science & Engineering

University of Engineering & Technology, Lahore
Pakistan

Monitoring of Virtual Routers of OpenStack with Monasca
(Session 2012 — Computer Engineering)

The thesis is to be submitted to the Department of Computer Science and Engineering, University
of Engineering and Technology, Lahore for the partial fulfillment of the requirement for the
Bachelor’s degree in Computer Engineering.

Approved on:

Internal Examiner External Examiner
Signature: Signature:

Name: Name:

Designation: Organization and Designation:
Chairman Dean

Signature: Signature:

Prof. Dr. M. A. Maud

Chairman Department of Computer Science Dean Faculty of Electrical Engineering,
and Engineering, UET, Lahore UET, Lahore

Department of Computer Science & Engineering
University of Engineering & Technology, Lahore Pakistan

Declaration

I declare that the work contained in this thesis is my own, except where explicitly stated
otherwise. In addition this work has not been submitted to obtain another degree or
professional qualification.

Signed:
Date:

i

Abstract

Cloud computing, also known as on-demand computing, is rapidly gaining fame in the
IT sector. OpenStack is a cloud management software which provides us with IaaS cloud
model. The opensource community is readily adding more features to OpenStack depend-
ing upon growing needs of cloud computing. Monasca is a monitoring project of OpenStack
used to monitor the health of OpenStack services and cloud infrastructure. Network mon-
itoring capabilities of Monasca are very limited. There is no mechanism to monitor the
networking metrics of virtual routers distributed across OpenStack network and compute
nodes. Interacting with the industry people, we came to know that there is a need of
monitoring virtual routers in the OpenStack industry. To add this fuctionality, we have
been understanding the working and architecture of OpenStack and Monasca.

il

Dedicated to our parents and advisor

v

Contents

Abstract
Table of Contents

Table of Figures

1 Introduction

1.1 Why open source development?
1.2 Why OpenStack?
1.3 Organization
1.4 Contribution
1.5 Methodology
1.6 Modules of our project

2 Literature Review

3 Architectural Overview and Deployment of OpenStack

3.1 Cloud Computing
3.2 OpenStack
3.2.1 Example Architecture L.
3.3 Learning Keystone and Neutron
3.3.1 Keystone.
3.3.2 Neutron
3.3.3 Deployment

4 Architectural Overview and Deployment of Monasca
4.1 Architecture
4.2 Deployment
4.3 Usageo

5 Problem hunt and finding community mentors

6 Design of Virtual Router Plugin
6.1 Virtual router driver
6.2 Virtual router plugino

—t
WhH © ©ow-=-1o O I°N W NN DN DN =

—_

6.3 Visualization of data

vi

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4

Three layer model of Cloud Computing 6
OpenStack Projects o 8
Example Architecture of OpenStack 9
Keystone Authentication Process 11
Network types and their functions 12
Networking with Distributed Virtual Router 13
OpenStack Dashboard aka Horizon 14
List of OpenStack users L 15
Example Network Topology 15
Booted Instance in Horizon 16
List of virtual routers on a Computer node 16
Routing table at Host node 17
Architecture of Monasca 19
Architecture of Monasca agent L. 20
Monasca Ul integrated with OpenStack dashboard 22
Graphs showing health of Monasca 23

vil

Chapter 1

Introduction

We are writing a plugin that would enable the OpenStack network admins and operators
to monitor the health and status of virtual routers per tenant in real-time. Let’s establish
our problem statement by considering an industrial use case:

Suppose you're a company running OpenStack as your on-premise cloud man-
agement operating system. You're hosting a web-server on one of your virtual
machines which gets external internet connectivity via a virtual router. As an
OpenStack admin, while you're working on something important, you get a call
from an angry user complaining about unavailability of web-server or even worse,
you find FBI standing at your doors accusing you for a DDOS(distributed denial-
of-service) attack. You're standing there blank wondering what could have possibly
happened?

Problems like these are common when you are running a huge cloud environment
where there are a lot of services interacting with each other in real-time. Whether you're
a multi-millionaire banking company hosting millions of transactions per second like
PayPal, or an average business firm hosting your own data in a cloud, you would like
to know beforehand about any of the situations that could result in malfunctioning of
your system. For instance, in above mentioned scenario, what if you get a notification
warning you about unusual outbound traffic at a particular router interface or, while
you're leisurely checking the performance of your cloud, you see unusual traffic spikes at
a particular department router in the form of graph, you can look into it and see what’s
actually wrong. We intend to solve these kinds of monitoring issues in our project that
would enable us to debug the virtual router related problems, and also minimize these
issues by informing us beforehand about them.

1.1 Why open source development?

The idea of open sourcing has always been fascinating to us. Understanding large-scale
complex systems, digging through thousands of lines of code and then adding your own

Chapter 1: Introduction 2

code of that quality is something that students like us would love to challenge ourselves
with. There’s a lot of learning involved in the process and we wanted to learn as much
as possible through our final year thesis.

1.2 Why OpenStack?

Although quite a lot of interesting and challenging opensource projects are going on
currently including Docker, Ansible, Kubernetes etc. We chose OpenStack because it
mainly utilizes our academic concepts of domains like Operating Systems, Networking,
Data Structures, Computer Architecture etc. It is currently under heavy development
which makes this an excellent opportunity to contribute to future technology powering
our data and services.

1.3 Organization

This report covers the modules that we’ve been successful to complete till date. Chap-
ter 1 introduces our problem statement, goals, motivation as well as the methodology
and approach that we're using. Chapter 2 covers the literature review of our project.
Chapter 3 and 4 give details about OpenStack and Monasca respectively including their
deployments and some test commands. Chapter 5 describes how we came across this
project idea and community members. Chapter 6 gives the design of the plugin that we
are proposing to implement.

1.4 Contribution

Our contribution would help all kinds of users of OpenStack, whether it is a small firm
comprising of 10-15 physical nodes or a large company consisting of 100-1000 nodes,
because we are embedding our plugin within current well-established systems.

1.5 Methodology

To enter the opensource community whilst targeting a reasonable industry project, we
initially searched for technologies that were famous, went with our research interests and
were emerging rapidly around the world. During this process, we came across different
technologies and decided to work with cloud computing because it is thought to be the
future of IT sector. Getting to know that OpenStack is one of the major cloud managing
softwares these days and many major companies have deployed it to manage their clouds,
we went through different OpenStack projects and among these, Monasca, an OpenStack

Chapter 1: Introduction 3

monitoring project, intrigued us the most. Monasca is still under active development.

We chose to develop Monasca to enhance its monitoring capabilities for OpenStack.
Interacting with different people of the well-known companies, we came to know that
Monasca offers very limited network monitoring capabilities. One of the network mon-
itoring features that was lacking in Monasca and considered significant by the industry
was monitoring of OpenStack virtual routers. We are in the process of implementing it
now. For this we have been digging through the Monasca code to find alternate ways of
getting access to the networking metrics of virtual routers.

Some of the limitations that we faced in this phase include shortage of resources.
Deploying OpenStack with Monasca requires around 10 GB RAM and our computers
support at most 8 GB RAM. We didn’t have anybody around who was proficient with
OpenStack and Monasca. Web was the only source to get any kind of assistance on the
subject. Moreover, we also encountered issues regarding our interaction with the industry
people because of our remote location.

1.6 Modules of our project

Our project can be logically divided into the following sub-modules which are described
in later chapters.

1. Deployment and understanding of OpenStack
(a) Learning about Keystone and Neutron

2. Deployment and understanding of Monasca

3. Problem hunt and finding community mentors

4. Design of virtual router plugin

5. Implementation

6. Testing

7. Uploading code to community

8. Getting community approval and merging to official git repo of Monasca

Chapter 2

Literature Review

Cloud computing, which provides computing, storage and networking on-demand, is
rapidly gaining fame all over the world. Due to the growing trend of cloud computing,
Rackspace and NASA developed OpenStack project to manage the cloud infrastructure.
As new features are getting introduced in cloud, OpenStack is also getting richer in its
features. One of the companies using OpenStack felt the need of a monitoring tool to
monitor the health of OpenStack and the cloud it manages to get aware, beforehand, of
any situation likely to cause problems for its customers. Monasca was thus developed. It
also supports numerous plugins to monitor different resources in cloud. However, network
monitoring capabilies of Monasca are very limited and although it supports addons, there
is no plugin designed specifically to monitor virtual routers within the OpenStack cloud
infrastructure. In this project, we intend to add the monitoring capability of OpenStack
virtual routers in Monasca.

In order to get access to the documentation and videos of OpenStack, guides on how to
deploy it for development purposes, OpenStack opensource community, Rackspace cloud
computing provided OpenStack users with a very useful resource in the form of a website
[1]. Tt helped us not only to get a headstart with OpenStack but also timely informed us
about the new additions made in OpenStack.

To understack Monasca, its features and architecture, the website developed by Hewlett
Packard Enterprise [2] proved very useful. As Monasca developers, we required an up-to-
date and reliable information source: this website fully served the purpose by informing
us regarding all the major upcomings in Monasca.

The developer blog of James Denton also served as one the major information re-
sources for this project. It helped us to gain an in-depth understanding of Neutron
routers (virtual), their functionality and how they are implemented in OpenStack [3].

Github [4] served as a primary source to understand Monasca on code level. It pro-
vided us with an in-depth documentation and code of all the components of Monasca

Chapter 2: Literature Review)

including monasca-api and monasca-agent. Moreover, through this site, we came across
three major Monasca deployment guides that helped us to choose one of these on the
basis of our available compute and memory resources.

Since Neutron uses distributed virtual routers, this web page [5] assisted us to gain
sound knowledge of the cause for using distributed routers on compute nodes instead of
using single router on the network node in OpenStack. Using this knowledge, we were
able to design our monitoring plugin so that information regarding the virtual routers is
gathered from both the computer and the network nodes.

Chapter 3

Architectural Overview and
Deployment of OpenStack

This chapter describes the concepts of OpenStack and its basic usage necessary for un-
derstanding this thesis. It provides description from what exactly cloud computing is to
how OpenStack is playing its part in shaping cloud management across the globe.

3.1 Cloud Computing

Cloud computing enables its users to use compute, networking and storage resources as
a utility rather than having to build and maintain storing and compute infrastructures
in-house. It provides the consumers with a comprehensive virtualization model from
infrastructure through application delivery where they have to pay for only what they use.
It consists of three basic models namely software as a service(e.g. Google Apps, Workday),
platform as a service(e.g. Cloud foundry, Google App Engine) and infrastructure as a
service(e.g. OpenStack, Amazon web services), hence cloud computing is often referred
to as stack because these services are stacked over each other.

Applications

Applications Applications

Middleware/0S Middleware/0S Middleware/0S

IaaS PaaS SaaS

host build Consume

HIED | da

Figure 3.1: Three layer model of Cloud Computing

Chapter 3: Architectural Overview and Deployment of OpenStack 7

3.2 OpenStack

OpenStack provides us with IaaS which is, the ability to programmatically create, manage
and consume infrastructure elements including storage volumes, network and compute
resources. OpenStack enables its users to use cloud models based on different deployment
use cases. These include private, public and hybrid clouds. Depending upon the needs
of the user, one of the cloud models may be adopted. The functionality of these cloud
models is achieved using services provided by the components of OpenStack [1]. Using
code names, the services of OpenStack are briefly described below.

Nova
It is the Compute service that allows the provisioning and management of large
networks of virtual machines to enable high performance computing.

Cinder
It provides Block Storage service to compute instances by maintaining the life-cycle
of block devices, from their creation and attachment to virtual machines, to their
release.

Neutron
It provides Cloud Networking service to cloud users or tenants, such as IP address
management, load balancing and security groups(firewall policies, network access
rules, etc.). It provides a framework for software defined networking(SDN) in virtual
compute environments.

Glance
It provides Image service where users can upload and discover data that is to be used
with other services. Currently, this includes discovering, registering and retrieving
virtual machine images and meta-data definitions.

Swift
It provides Object storage service that supports storage and retrieval of arbitrary
data in cloud. It is best used for static data like media files, virtual machine images
and backup files.

Keystone
It is the identity service for authorization and authentication of users, services and
endpoints.

Horizon
It is the dashboard that provides web interface to cloud administrators and tenants.
Through the interface, users can provision and manage cloud resources.

In addition to these services, there are additional projects under the big tent of Open-
Stack providing its users with numerous useful services like monitoring, orchestration,
telemetry etc. Some of the services interacting with each other are shown below.

Chapter 3: Architectural Overview and Deployment of OpenStack 8

PP ‘ graphical user interface
(Dashboard)
_ creates stacks

Heat
(Orchestration)

persistent storage

authentication
v

Glance Swift
(Image) (Object Store)

Ceilometer
(Telemetry)

Cinder Nova
(Block Storage) (Compute)

A 4 4 4 4

network connectivity t ges stores images as

4 4 4 £ T

collects usage statistics

Neutron

Networkin
Keystone authentication| (9)

(Identity) ‘ o e, e

Tai oy b
¢}

Figure 3.2: OpenStack Projects [6]

As OpenStack is an open source project, anyone around the globe can start a project
catering a specific service and apply for it to be declared as official project. Developers
upon coming across these projects will start to contribute if it matches their or the com-
panies they are representing interest.

3.2.1 Example Architecture

The architecture of OpenStack depends on its use cases. of The example architecture
described below consists of two nodes for launching a basic instance or virtual machine.
If optional services like block storage or object storage are required, they would need
additional nodes.

Controller Node

The services that run on controller node include identity for authentication and image for
getting an operating system image that would eventually used by Nova service to boot an
instance. In addition to these services, the controller node hosts management portions
of compute and networking, a number of networking agents like neutron-13-agent, ovs
agent etc., and the dashboard for providing user interface. It may also include services
that support other OpenStack services such as an SQL database and message queue. It
requires two network interfaces at minimum.

Compute Node
The compute host runs hypervisor that operates virtual machines. It uses KVM as its

default hypervisor. It also runs networking agents that are used to connect instances to
virtual networks. Firewalling service is provided to instances through security groups. A

Chapter 3: Architectural Overview and Deployment of OpenStack 9

user can deploy a number of compute nodes depending upon its requirements.

Controller Node Compute
——— == -
5QL Database Networking [Block Storage | Nodes
Service Management N Management J

KVM Hypervisor

Networking

M
essage Queue ML2 Plugin

Compute

1
]
1
]
]
]
:
]
/

Network Time Linux Network Object Storage

1
[Service J (Utilities] Proxy Service J Linux Network
== ~ Utilities
[Identity J [Networking] | MTEIemEtw :
L. SIEESIENY > Metworking
[J (J ———— e —— - Linux Bridge Agent

e

Linux Bridge Agent

Metworking

. Telemetry |
Image Service L3 Agent

[
I
|\ Agent(s) : Telemetry |

| Agent J
————

Compute
Management

Metworking
DHCP Agent

Metworking
Metadata Agent
CJ Core component

1 1 1 .
, Optional component

Figure 3.3: Example Architecture of OpenStack [1]

Above mentioned architecture is for two nodes whereas in production environment net-
working services are hosted on a separate network node.

3.3 Learning Keystone and Neutron

The core services which are directly under the scope of our project are
e Keystone

e Neutron

3.3.1 Keystone

As mentioned earlier, keystone is authentication and authorization service for OpenStack.
It is the service that lets the users and other services to access OpenStack. For our project,
it’s necessary to understand some basic terminology related to Keystone.

Users
Users in Keystone today are generally people. When a user authenticates to Key-
stone, it actually presents its details to Keystone like his username X password Y
and a tenant name 7Z to which he belongs. X can be a userid or username, Y is a

Chapter 3: Architectural Overview and Deployment of OpenStack 10

password, but you can authenticate with a token too. Z is a tenant id or tenant
name that would be unique. In previous releases of OpenStack, you didn’t need to
specify a tenant name, but in that case your token wouldn’t be very useful, as the
token wouldn’t be associated with your tenant and you would then be denied of
any ACLs on that tenant.

Tenants
A tenant is also known as a project in OpenStack. When you log into horizon, you
see a drop down for your tenants. Each tenant corresponds to a tenant id. Tokens
are associated with a particular tenant id which means you may require several
tokens for a user if you want to work on multiple tenants the user is attached to..

Roles

Adding a user to the tenant id of admin that has administration privileges doesn’t
mean that user gets admin privileges. That’s where roles come in handy. Although
the user in admin tenant may have access to its virtual machines and quotas, that
user wouldn’t be able to query keystone for a user list and action like these that
require admin authority. But if you want to achieve that level of functionality, you
can add an admin role to that user. That user will be given the ACL rights through
which it can act as an admin in the keystone API.

Regions
Regions are more like ways to geographically bind physical resources in groups in
the OpenStack infrastructure environment. For instance, you have two segmented
data centers and you might put one in region A of your OpenStack environment
and another in region B.

Catalog

Keystone also provides another useful thing, the catalog. The Keystone catalog can
be thought to be like the phone dictionary for the OpenStack APIs. Whenever you
use a command line client, like when you might call neutron port-list to list your
ports, neutron first authenticates to keystone and gets you a token to use the API,
but it also immediately asks for API endpoints list from Keystone catalog. For
keystone, cinder, nova, neutron, glance, swift... etc. Nova will really only use the
neutron-api endpoint, though depending on your query you may use the keystone
administrative API endpoint. But essentially the catalog is a canonical source of
information for where APIs are in the world. In this way, the only thing that a
client would need to know is public API of Keystone. Rest of the information can
be retrieved from the catalog.

Keystone APIs
Keystone has two APIs. It runs an API on port 5000 and another one up in the
32000 range. The 5000 is the public port. This is endpoint from where you ask
for a token or keystone catalog to talk to other services(APIs). The administrative

Chapter 3: Architectural Overview and Deployment of OpenStack 11

API would be used for performing actions that require administrative privilege like
adding a new endpoint or changing a users password [7].

2 Keystone verifies credential, if ok,

: : ends user back atoken
1. User provide credential
___(tenantusername, password)

'Z/'-_USEF g FEyStONE
o _"

3. user getsthe token

5 novaverifies the token to see the userisvalid,
Then verifies the user has required role to perform
4. user presents the token to openstack services, the action
along with the operation to perform (X, "'nova boot
g NWE-COMpLEe

Figure 3.4: Keystone Authentication Process in a nutshell [8]

3.3.2 Neutron

Since our project is mainly related to monitoring virtual routers of OpenStack, we
had to go deeper with Neutron especially to understand how a virtual router is setup.
Neutron is basically a Software defined networking project that focuses on delivering
NaaS(networking-as-a-service) in a virtual environment. The concepts related to Neu-
tron which are essential for our thesis are as follows

e Neutron server: It runs on controller node and handles all the API requests. It
routes them to relevant networking plug-in.

e Networking plug-ins and agents: These perform the tasks like plugging and
unplugging ports, creating networks and subnets, and providing IP addressing.
Only one plug-in can be at a time.

e Messaging queue It is used for information exchange between server and agents.
It is also used to route information between server and neutron database.

Types of Networks: Tenant and Provider

A provider network provides the instances with Internet access. By default, it allows
Internet connectivity from virtual machines to outside world using NAT(Network Ad-
dress Translation). We can then allocate floating IPs and security groups to instances for
communication. of Internet. It is owned by administrator tenant as it provides Internet
for various tenants.

Chapter 3: Architectural Overview and Deployment of OpenStack 12

A Tenant network provides the tenants with access to internal network. It is owned by
a tenant and instances residing within a particular tenant use this network for commu-
nication between themselves. Multiple tenant networks can exist within the same host
that would be isolated from each other. This is achieved by Linux namespaces.

Provider Network = 212.10.20.0/24

Network Node
o
Tenant Network - 10.0.0.0/8 |

vRouter - Internal - 10.255.255.254
vRouter — External — 212.10.20.1
vRouter — Floating IP — 212.10.20.2

L]
Compute Node

A A A

VM: 10.0.0.2

vM: 10.0.0.1

Figure 3.5: Network types and their functions
Neutron L3 agent

Neutron API allows tenants and admins to create logical routers that connect to layer-2
networks. neutron-13-agent uses Linux iptables and IP stack to perform actions like NAT
and L3 forwarding. In order to provide isolated packet forwarding to different routers
related to different tenants, it uses Linux namespaces. Each router have its very own
namespace that has its network UUID based name.

Virtual routers created in this manner handle communication between LAN interfaces(usually
VLAN, GRE or tenant networks) that are directly connected and a WAN interface(usually
VLAN or flat provider network). It is possible to use a bridge for this purpose but exist-
ing provider networks is what people mostly use these days.

Distributed Virtual Router(DVR)
With legacy networking, virtual routers used to lie on network nodes which causes prob-

lems such as

e Traffic between different instances belonging to different subnets but same tenant
have to get routed through network node which affects, obviously, performance.

e Instances to which floating ips have been attached to also send and receive packets
via network node router.

Chapter 3: Architectural Overview and Deployment of OpenStack 13

The solution of these problems is proposed via distrubuted virtual router that will reside
on compute nodes instead of network node(s). For this purpose, the enhanced version of
neutron-13-agent will run on every compute node handling the routing requests.

/_f
ﬁ;‘{iﬁﬁ! Nota bottle-neck for
East-Westtraffic

anymore
‘ Nﬂtwork
Node
/ > \
P AV
AN :
) P . .
B
A e -‘ - -
e "\

Figure 3.6: Networking with DVR [1]

3.3.3 Deployment

In OpenStack community, the most widely used development flavor of OpenStack is
DevStack. It is mostly the first choice of OpenStack developers as it automates most of
the deployment and is easy to use. It is available in different configurations, for instance

e Single node setup
e Single VM setup
e Multi-node setup

We are currently using single node setup on our bare metal machines. Although it is
preferred to use DevStack VM because node setup can intervene with your operating
system settings but due to memory constraints, we are bound to use bare metal setup.
It requires minimum of 4GB RAM.

Here is how we brought it up [4]:

1. Installed Ubuntu 14.04 Trusy Tahr on our bare metal machines.

Chapter 3: Architectural Overview and Deployment of OpenStack 14

2. Installed git and grabbed the latest version of DevStack using the following com-
mands

(a) sudo apt-get install git -y || sudo yum install -y git
(b) git clone https://git.openstack.org/openstack-dev/devstack
(¢) cd devstack

3. Setup the local.conf file according to our requirements which included the config-
urations for DevStack, for instance, which service to enable or disable, credentials,
ip addresses etc.

4. Changed directory to devstack and ran ./stack.sh

After its successful installation, we were presented with its dashboard(horizon). Logging
in as an admin user, we were able to launch Vms, create different network topologies per
tenant etc. These functions are also achievable via OpenStack command-line interface
which is a python client.

(4 @[3 192.168.43.91 F Q =
i Apps [wired.com PCWorld-News, [HowBytesandE 3 Upand Downthe B Error-Correcting & Led Cube Display [\ Main Content | 1 » | @ Other bookmarks
B8 openstack 5 admin & admin =
Project - Overview
Admin ~
System - Usage Summary
Identity -
Developer . Select a period of time to query its usage:
From:| 2016-02-01 To: 2016-02-10 m The date should be in YYYY-mm-dd format
Active Instances: O Active RAM: 0 Bytes This Period's VCPU-Hours: 0 This Period's GB-Hours: 0 This Period's RAM-Hours: 0
Usage & Download CSV Summary
Project Name VCPUs Disk RAM VCPU Hours @ Disk GB Hours @ Memory MB Hours @

No items to display.

Displaying 0 items

192.168.43.91/dashboard/admin/#sideb cordi dmi

Figure 3.7: OpenStack Dashboard(Horizon)
Usage

We can use openstack command-line interface to perform different actions. Following are
some of the many commands that we used during our project.

e to list OpenStack users, we can use following command-line

openstack user-list

Chapter 3: Architectural Overview and Deployment of OpenStack 15

rubab@rubab-0s: ~/devstack * rubab@rubab-0s: ~/devstack

81c52c6bfef

9f1c25a0c75

a3436

b955a d3e e3858 demo
clbif 6 9d6 e nova
cd@b? 9cd28 neutron

Figure 3.8: List of OpenStack users

e We can source the credentials of a user belonging to a particular tenant. We use
this to reduce our work of explicitly providing credentials each time we need to
perform an action.

source openrc admin demo

where admin is user name and demo is tenant name.

e Following is a simple network topology that we created in OpenStack for test pur-
poses. It contains two instances attached to a subnet and getting external internet
connectivity via a router which is connected to provider network.

¢ © 019216819 =0 =
2 apps [wired.com Pcworld-News, [HowBytesand B 3 Upand Down the B Error-Correcting & Led Cube Display [A Main Content | » [Other bookmarks
B openstack Sdemo~ & admin -
Project - Network Topology
Compute Resize the canvas by scrolling up/down with your mouse/trackpad on the topology. Pan around the canvas by clicking and dragging the space behind the topology.
Network 28 Toggle labels | 3 Toggle Network Collapse & launchinstance |+ Create Network |+ Create Router
etwork T
Network:
Route
Admin
Identity
Developer
192.168.1.9/dashboard/project/network_topology/createnetwork -

Figure 3.9: Example Network Topology

Chapter 3: Architectural Overview and Deployment of OpenStack 16

e To launch an instance in OpenStack, Nova API is used with relevant information.
We can boot it from cli as well as from dashboard. Following is a basic command
to boot a cirros image. We can give it multiple options that it supports.

nova boot —--image cirros-0.3.1-x86_64-uec {flavor ml.nano {name
Vmm

How it appears in Horizon

< = [1192.168.43.91 s 0 =
it Apps [wired.com PCWorld-News, [1 How Bytes and % Upand Down the B Error-Correcting & Led CubeDisplay [\ Main Content | ! » | I Other bookmarks
3 openstack Bdemo~ &aamin -
Project - Instances
Compute
Instance Name = ¥ Fiter || & Launch Instance More Actions ~
Instance . geName 1P Address Size KoY raws ARG, Power Timesince ...
Name Pair Zone State created
Volumes . cimos-0.34- fddbrbe9e:7h6r0:1816:3efffefb:604 -
X85, 64-uec 10002 mlnano - Active nova None Running O minutes Create Snapshot |~

Images

Displaying 1 item

curity
Network

Admin
Identity

Developer

Figure 3.10: Booted Instance in Horizon

e We can list routers residing on a node using a Linux command, as router is a just
a namespace in linux environment.

rubab@rubab-0s: ~/devstack X rubab@rubab-05: ~fdevstack
rubab@rubab
qrouter-c37461

qdhcp-739402b3-c7
rubab@rubab-0

Figure 3.11: List of virtual routers on a Computer node

e Following command shows how host’s routing table changes when an OpenStack’s
network topology is created.

Chapter 3: Architectural Overview and Deployment of OpenStack

17

rubab@rubab-O
rubab@rubab-0
Kernel IP routing
tination

: ~/devstack

X rubab@rubab-0s: ~/devstack

Genmask e Iface
0.0.0.0 ¢ O wlan@
br-

® docker®
wlano
S . . 224 0 ¢ O br-ex
192. 122. g - - - virbre
rubab@rubab e ¢

Figure 3.12: Routing table at Host node

Chapter 4

Architectural Overview and
Deployment of Monasca

Monitoring solutions to monitor the health of OpenStack infrastructure and its VMs have
been around for quite a while but, in many respects, they fail to address the requirements
of monitoring large-scale public and private clouds. Traditionally, these provide scalabil-
ity, performance and retention of data for a very limited number of systems usually in
the order of hurdredths. In a large-scale cloud, hundreds of thousands of physical servers
and virtual machines (VMs) need to be monitored which results in huge amount of data
to be monitored. The monitoring data needs to be stored in an on-line and queryable
form for longer data retention periods depending upon the requirements of the business.
Such long data retention periods are necessary for business continuity and analytics.

Cloud infrastructure is constantly evolving with VMs and auto-scaling to varying loads.
Thus, elasticity in monitoring solutions is very important. Most of the current monitoring
solutions assume a static infrastructure where the monitoring tool needs to be configured
again every time a new VM or a physical server is added. This results in the monitoring
team /server being the bottleneck. Self-service model that empowers teams to easily add
new services and resources and monitor them without the participation of monitoring
teams is necessary [9].

Self-describing data that allows flexible name, value pairs is necessary to identify met-
rics. Most of the current monitoring solutions allow very limited meta-data offering no
flexibility such as host name and service which results in ambiguities and mismatch [9)].

Dynamic adjustment of alarms at run-time is necessary to be able to tune the system over
time, which is not support by most of the systems. Generalization of alarm definitions
is also necessary to avoid to manually declare alarms which may share many common
attributes and differ in only one of them. Moreover, alert fatigue 1 is also a very common
problem with every thresholding system.

18

Chapter 4: Architectural Overview and Deployment of Monasca 19

Monitoring-as-a-service use cases addressed by proprietary solutions are not opensource.
Multi-tenancy, which is the ability to stream metrics from cloud resources of customers,
is significant while isolating the data from other customers. Consolidation of health
alerting, notifications, metrics and monitoring-as-a-service from multiple systems must
be done on a higher level to minimize complexity and do analysis on the data.

Monasca caters for the needs of a comprehensive monitoring solution. It is a scalable,
high-performance, open-source monitoring solution that allows multi-tenancy and longer
data retention periods as compared to any other monitoring solution. It is build up of
high-speed message queues, databases and computational engines making it one of the
best monitoring solutions in town. All of its components can be horizontally scaled out
thus supporting elasticity in the cloud infrastructure. All external interaction with the
Monasca service is done through an API which can be made available on as many systems
as required thus allowing a self-service model. In Monasca, the number of dimensions for
a metric is also pretty flexible. Moreover, alarm definitions are created automatically by
the threshold engine from matching metrics or dimensions thus reducing the overhead of
managing alarms [9].

4.1 Architecture

Following figure show different components of Monasca and how they are interralated to
one another.

system being
monitored
“':i";‘::;g Monasca Monasca
Dashboard Client (CLI) Agent
Query Metrics |
Create Alarm Definitions POST
Query/Delete Alarms metrics
Create Notification Methods |
Monasca AP
<<REST>>
publishes metrics and domain events
Store Alarms Definitions Query metrics

Store Notification Methods Query Alarm History

Metrics and
Alarms
Database

Config
Database

Figure 4.1: Architecture of Monasca [2]

Chapter 4: Architectural Overview and Deployment of Monasca 20

All the major components of Monasca and their functions are described below.

Monasca agent
It is one of the major components of Monasca that resides on the system being
monitored and is responsible for posting metrics, which can be based on system,
nagios plugins, statsd or other kind of checks available in Monasca by default, to the
monasca-api. Within the Monasca agent, its sub-components work in the fashion
described below.

supervisord
monasca-collector Keystone
API
get auth token
gets metrics \
checks j monasca-
forwarder
sends metrics
/buffers metrics
monasca-
application [— statsd Monasca
sends|metrics API

Figure 4.2: Architecture of Monasca agent [4]

e Collector: This component collects sytems metrics or other metrics from ad-
ditional plugins after a specific configurable time-interval.

e Statsd deamon: This componenst is responsible for sending statsd type metrics
to the monasca agent. These message are sent by the users asynchronously.
However, after a fixed time period, these messages are flushed to monasca-
agent.

e Forwarder: It collects metrics from both collector and statsd deamon and after
getting authentication from Keystone, sends them to the monasca-api.

Monasca API
It is the gateway to all the communication taking place with Monasca. It is respon-
sible for
e storing metrics, alarms definitions, alarm history and notification methods
e querying metrics, alarms, statistics for stored metrics
e creating and deleting of alarm definitions and notification methods

e updating alarm definitions

Chapter 4: Architectural Overview and Deployment of Monasca 21

e sending notifications to the users via email when alarms trigger

Perister
It recieves metrics and alarm state transitions from the message queue and stores
them in the metrics and alarms database. It can be horizonatally scaled to any
number of Persisters for consuming more messages from the message queue.

Threshold engine
It evaluates alarms by comparing metric values with the threshold values defined in
alarms. It publishes alarms to the message queue if the value exceeds the threshold
value. It is based on a real-time computation system Apache Storm.

Notification engine
As the name suggests, this engine is responsible for consuming alarm state transi-
tions from the message queue and notifying the user via email or some other method
as define in the notification methods.

Message Queue
Metrics and alarm transition state messages, published by the Monasca API, are
recieved by the message queue. These messages can be consumed by other Monasca
components for different purposes. It can also receive published messages from the
Threshold engine which are received by the Persister and the Notification engine.
It is based on Kafka.

Config Database
Notification methods and alarm definitions and stored in this database. Currently,
Monasca supports MySQL database.

Metrics and Alarms Database
Metrics published by Monasca API and alarm state transitions published by the
Threshold engine are stored in this Database. It maintains history of metrics and
alarm state transitions over a period of time. Monasca supports Influxdb and
Vertica.

Monasca CLI
It is a command line client and library that allows communication with the Monasca
API. Throuth this clinent, users can control Monasca API.

Monitoring Ul
It is a horizon dashboard that allows operators/users to visualize the health of
Monasca, OpenStack and the cloud managed by OpenStack.

4.2 Deployment

Since Monasca is still under development, it is currently difficult to setup without any
assisstance. There are two famous solutions available for deploying it:

Chapter 4: Architectural Overview and Deployment of Monasca 22

e monasca-vagrant

e monasca-devstack
We used monasca-vagrant setup having the following steps

1. run sudo apt-get install virtualbox
2. Download and install latest vagrant from http://www.vagrantup.com/downloads.html.
3. run sudo pip install ansible. Ansible version 1.8+ is required.

4. run ansible—galaxy install -r requirements.yml -p ./roles

We are using department’s computers for monasca vagrant deployment and testing envi-
ronment.

4.3 Usage

When Monasca gets deployed, the OpenStack dashboard looks something like as show
in the following figure. In the sidebar of OpenStack, a new tab gets added named as
Monitoring tab. Clicking on this tab, user can see a number of services enabled in
OpenStack. Through these subtabs, users or administrators can view their health.

1 =] + [152.168.10.5 e o
B openstack £ minkmon + mikmond~| SgnOut
Project Monitoring
Identity All Alarms) Dashooard
Maonitoring o "
I" cincer_ap ||n rova_ap ”g lql @ swir api ”g giance .l
Alarm Def
Servers
Alarm:
|° devstack |a mini-mon

Matifications

Figure 4.3: Monasca Ul integrated with OpenStack dashboard

As shown in the following figure, an opensource graphing tool is used to show the health
of services being monitored with Monasca. Each of the graph is specified for a different
metric and shows its measurements over a period of time.

Chapter 4: Architectural Overview and Deployment of Monasca

23

9 192,168,105

Figure 4.4: Graphs showing health of Monasca

Chapter 5

Problem hunt and finding
community mentors

In order to contribute to open source projects, it is necessary to establish yourself in
community. OpenStack is one of biggest opensource projects that is also industry ori-
ented. Since we are still students, we don’t have much exposure to industry use cases of
OpenStack. So, for us to target a specific problem, we needed to know about the current
difficulties that OpenStack users and developers are facing. As mentioned earlier, the
domains that we were interested in included virtualization, networking and monitoring in
OpenStack. We setup our community identities and talked to network admins(especially
Neutron developers) about the features that they would like to monitor. We also talked
to the companies who are actually using Monasca in production environments asking
them about short-comings of Monasca in terms of network monitoring.

After thorough discussions and active contributions from industry people, we identified
some problems which are currently not being catered but users would like them to be
solved. Out of these problems, we prioritized virtual router monitoring problem. Follow-
ing are the other idea examples that we encountered

e Generation of FwaaS reports firewall as a service is considered an important
service in networking and is already up for work. One thing that can be done
to enhance its functionality and help network admins in to add report generation
feature of the traffic blocked /passed (via the ip tables or by fetching from Neutron
logs). This is not yet incorporated. Monasca is still adding support for logging-as-
a-service so in order to integrate the FwaaS reporting with Monasca, we thought
it’d be better to do it once LaaS is mature enough in Monasca.

e QoS Quality of service is already implemented in Neutron. We could integrate it
with Tap-as-a-service(an extension of Neutron for port mirroring) to determine if
Service Quality is assured or not.

24

Chapter 5: Problem hunt and Finding Community Mentors 25

We intend to do these projects in future but currently decided to pursue virtual router
monitoring project because it appeared to be unique, the industry people gave very en-
thusiastic feedback over it and it seemed to be challenging enough for us to dive with full
energy in open source development.

We were also able to find community mentors that agreed to help us during this project.
These people belong to some famous companies like Hewlett Packard, Time Warner
Cable, NEC Technologies and PLUMgrid.

Chapter 6

Design of Virtual Router Plugin

Since our goal is to implement something that works well with the currently established
systems, our approach is to design our plugin following the convensions/architecture of
already implemented plugins working seamlessly with OpenStack and Monasca. One such
plugin is Libvirt[github link] which is used to monitor network traffic per instance.

Our proposed design includes three modules

e Virtual router driver
e Virtual router plugin

e Visualization of data

6.1 Virtual router driver

Monasca collects OpenStack’s data via its agent which resides on physical nodes(commonly
compute nodes). Each compute node can host multiple virtual routers belonging to differ-
ent tenants but there’s only one router per tenant. Our target is to visualize bandwidth,
throughput per tenant. As the network traffic targeted for any virtual machine related
to any tenant eventually gets in/out of the network through physical NIC of the compute
node so, the crucial part of our project is to devise such a mechanism that would filter
out the traffic based on the tenant ids and IP addresses.

We are writing a driver for that purpose that would access the data about routers cur-
rently residing on a particular compute node through Neutron database via Neutron API.
It will also collect data about which router belongs to which tenant, how many interfaces
does a particular router has at the very moment and what are the ip addresses assgined
to them. Our driver would get integrated with Neutron’s packet forwarding mechanism
based on routing table of host. It would then perform calculations based on incoming and
outgoing packets targeted for a particular VM residing on a particular subnet attached
to a particular interface of router.

26

Chapter 6: Design of Virtual Router Plugin 27

6.2 Virtual router plugin

Our router plugin will use the driver discussed above to fetch the calculations related to
a particular router and convert this data into metrics understood by Monasca. When
monasca-agent asks for the metrics after regular intervals by performing checks on system,
our plugin will forward these metrics to it. Monasca agent will eventually post these
metrics to message queue via monasca-api, from where the metrics get written to time-
series database with monasca-persister. Following are the metrics that we are currently
proposing to monitor

1. net.in bytes_sec

2. net.out _bytes_sec

3. net.in_packets_sec

4. net.out_packets_sec

5. net.in_packets_dropped_sec

6. net.out_packets_dropped_sec

6.3 Visualization of data

The data would be visualized with the help of monasca user-interface that has been in-
tegrated with OpenStack’s horizon. It uses an open source graph plotting tool called
grafana for plotting the measurements of a particular metric after regular intervals. Fol-
lowing the same approach, we would enhance grafana to show us the graphs related to
virtual router, with our added metrics, that will include bandwidth and throughput per
interface per tenant.

Bibliography

[1] “How to get started with openstack,” 2012.

[2] “Monasca: Monitoring-as-a-service (at-scale),” 2015.

[3] J. Denton, “Neutron networking: Neutron routers and the 13 agent,” 2014.
[4] “Openstack repositries,” 2016.

[5] “Neutron ovs dvr - distributed virtual router,” 2016.

[6] P. Inc., “Saas, paas, iaas?,” 2014.

[7] M. Joyce, “The relationship between endpoints, regions, etc in keystone openstack,”
2013.

[8] P. Biswas, “Authentication and authorization model in openstack,” 2014.

[9] C. B. Roland Hockmuth, Deklan Dieterly, “Monasca: Monitoring as a service (at
scale),” 2006-2013.

[10] S. Angaluri, “Providing the best infrastructure-as-a-service solution with openstack,”
2015.

28

